INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Third Year, 2022-23

Statistics - III, Backpaper Examination, December, 2023 Time: 2 Hours Total Marks: 50

1. Let $\mathbf{Y} \sim N_n(\mathbf{0}, \sigma^2 I_n)$. Find the conditional distribution of $\mathbf{Y}'\mathbf{Y}$ given $\mathbf{a}'\mathbf{Y} = 0$ where \mathbf{a} is a non-zero constant vector. [8]

2. Consider the model $\mathbf{Y} = \mathbf{X}\beta + \epsilon$, where $\mathbf{X}_{n \times p}$ has **1** as its first column and rank $r \leq p$, and $\epsilon \sim N_n(\mathbf{0}, \sigma^2 I_n)$.

(a) If $\hat{\beta}$ is the least squares estimator of β , show that $(\hat{\beta} - \beta)' \mathbf{X}' \mathbf{X} (\hat{\beta} - \beta)$ is distributed independently of the residual sum of squares.

(b) Find the maximum likelihood estimator of σ^2 . Is it unbiased?

(c) Explain how the coefficient of determination, R^2 , can be used to check the quality of the fitted linear model. [6+6+6]

3. Consider the following model:

 $\begin{array}{l} y_1 = \theta + \gamma + \epsilon_1 \\ y_2 = \theta + \phi + \epsilon_2 \\ y_3 = 2\theta + \phi + \gamma + \epsilon_3 \\ y_4 = \phi - \gamma + \epsilon_4, \\ \text{where } \epsilon_i \text{ are uncorrelated having mean 0 and variance } \sigma^2. \\ (a) \text{ Show that } \gamma - \phi \text{ is estimable. What is its BLUE?} \\ (b) \text{ Find the residual sum of squares. What is its degrees of freedom?[8+6]} \end{array}$

4. Let Y be a response variable and X_1, \ldots, X_k be covariates. Also, let ρ_i denote the correlation coefficient between Y and X_i , and let R denote the multiple correlation coefficient between Y and X_1, \ldots, X_k .

(a) Show that $R \ge \max\{|r_i|, 1 \le i \le k\}$.

(b) What is the exact relationship between R and r_i 's when k = 1? [5+5]